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LE’lTER TO THE EDITOR 

On a Bethe-ansatz approach to the derivative non-linear 
Schrodinger equation 

Shibani Sen and A Roy Chowdhury 
High Energy Physics Division, Department of Physics, Jadavpur University, Calcutta- 
700 032, India 

Received 27 July 1987 

Abstract. We continue our analysis of extended derivative non-linear Schrodinger equation 
with the help of the Bethe-ansatz technique. In our previous analysis by the Q i s M  approach 
it was not possible to consider the reduction of the extended system to the derivative NLSE, 

as the theory then becomes non-ultralocal. Therefore, here we have applied the approach 
of the Bethe ansatz to both the extended DNLSE and the usual DNLSE,  and show that it 
is possible to construct multiparticle quantum states in both the cases. 

In a recent paper [ l ]  we have formulated the quantum inverse spectral method for 
the extended derivative non-linear Schrodinger equation, by following the methodology 
of Faddeev [2]. At this stage we should explain what actually is meant by the word 
‘extended’. The original derivative non-linear Schrodinger equation ( DNLSE) is known 
to be non-ultralocal and non-canonical and Faddeev’s approach of QISM is not appli- 
cable to such a case. On the other hand, the heirarchy of equations derived by Gerdjikov 
and Ivanov [3] contains a coupled set of NLSE which under reduction goes over to 
DNLSE. But this ‘extended’ coupled set is canonical and ultralocal, and so it was 
possible to apply the QISM directly to this set but not to the original DNLSE. Furthermore, 
even after quantisation it was not possible to observe the fate of the reduced DNLSE 

within the set-up. Therefore we have addressed ourselves to the question of analysing 
further quantum mechanical aspects of both the extended and reduced systems, and 
incidentally the most elegant and alternative approach to QISM is that of the Bethe 
ansatz [4]. Therefore in the following we discuss these two equations on the basis of - 
the Bethe ansatz. 

The extended DNLSE is generated by the Hamiltonian 
m 

H=’ dx[(EOqlxxqO*+ ~ l ~ O x x ~ T ~ + 5 ~ ~ l ~ O ~ l x ~ l ~ T ~ O *  -$i&:qoqlqTxqT+ VOVIl 
2 L 

where 

vo= ElqOqT+EoqlqO* 

VI =4~:1q:l--2EOlq;l. 

[Eo40*(X), 4l(Xl)I = N X - X , )  

[E,qo(X), qT(x1)I = -8(x-x,) .  

The canonical set of commutation rules are 
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In the QISM approach [ l ]  we started with the definition of the vacuum, given as 

qTl0) = q$lO) = 0. (4) 

Here we proceed to construct the Bethe-like states by assuming condition (4) to be valid. 
For a one-particle state let us set 

and demand HI1, 1) = Ell ,  1) which immediately leads to 

fa2f1/ax2 = Ef,(x) fa2f,/ax2 = Efi. ( 6 )  

Now we consider two-particle states, but before actually writing them down let us 
clarify the notation we use in designating these states. In general, any such state vector 
will be a linear combination of states containing m of one species and n of the other 
species; therefore we specify these numbers in the argument of these states. It follows 
that the two-particle state can be written as 

12,11,2) = 1 J dxl dx2 g,(x,, x2)ql(xl)ql(x2)~~) 

1 a2g2 a2g, 3i ag, ag, 
d a x ,  2+7 ax,) -- 10(ax, -+- ax,) S(x, -x,)-4g,(x,, x,)6(x, -x2) = Eg,(x,x,) 

S(x,-x2)=Eg,(x,x2)  
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1 a2h4 a2h4 a2h4 
2 ax: ax, ax, 
- (-+ ?+ 7 - 2h3[ 6(x, - x3) + S(x2 - x,)] = Eh,. 

Next we look for solutions to the wave equations. In the case of one-particle states, 
the result is obviously simple plane waves. But in the case of two-particle states we 
assume solutions of the following form subjecting these to proper boundary conditions 
and the equations themselves. Let us set 

g,(x, ,  x2) = A, exp[i(Klxl + K2x210(x, - x d +  B, exp[i(K,x, + K2x2)le(xI -x2). 

Substitution of (11) in (8a, b, c) immediately leads to 

E = - i ( K : + K i )  

ii(K, - K2)(A, - B , )  = zi[if(K, + K2)(A3+ B 3 ) ]  -2(A2+ B,)  

if( K ,  - K 2 ) (  A, - B,)  = &( K ,  + K 2 ) (  A, + B , )  

i $ ( K , - K 2 ) ( A 3 - B 3 ) = ( A l + B I ) .  

If we now impose the usual normalisation conditions for g, then we obtain 

A, K , (  10 + 6i) - K2(  10 - 6i) - 40i 
B,  - K , (  10 - 6i) - K2( 10 + 6i) + 40i 

A2 K,(10-3i)-K2(10+3i) 
B2 - K , (  10+ 3i) - K,(  10 -3i) 

A3 K,-K2-2i 
B3-Kl -K2+2i ’  

_- 

-- 

_ -  

A similar analysis holds for the case of three-particle states, but it is not possible 
to write out the equations for the explicit solutions of the wavefunctions h,(x,x2x3) as 
they are large in number (we obtained 22 equations) and so can be solved only with 
the help of a computer. Therefore, we shall only study the reduced DNLSE itself rather 
than the extended version of the equation. 

In this case the equations are 

iu ,  + U,, + E , ( I U I ~ U ) ,  = o (17) 

where the Hamiltonian is 

H = ~ x [ - $ ( u u ~ - u , u * ) + E I I u ( x ) ( ~ I u ( x ) ~ ~ ]  I 
and the basic commutation is 
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We now proceed to construct the particle states as before by setting 

I1)= 5 dxlfl(xl)U(xl)lO) 

and so on. 
For the one-particle state we get the obvious result 

E = - K 2  a2fllaxz = Ef, . 
For the two-particle state we get 

Jf2 a 
ax: ax, axlax, 
a+%+ 2&,---s(x2 - X I )  = Ef2(x1x2). 

We now define new variables: 

XI,  = x2 - XI Y12 = x, + X I  

so we get two separate equations, 

El + Ez = E = -( K + K i). 
Equation (21a) can be solved by the imposition of the boundary condition deduced 
in the usual way by the integration of (21a) over a region x,  = x2. In our case this 
leads to 

In the case of three-particle states our equation is 

a2f3 a2f3 "f3) + 2 E I  ( af3(xlx2x3)  a -+,+- 
(ax: ax, ax: ax, ax, - -s(x, - x1 )) 

+terms with interchange of (1 ,2 ,3)  = E h .  
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To solve (23) we divide the regions in the coordinate space, and consider the following 
cases. 

Case (i): x2 # x,; x1 # x3. Here we define 

x2-xI = XI2 x2+x, = Y12 ~3 = 2 1 2 .  

Then we get 

- a2f3 + - + & + 2 ~ ,  a 2 f 3  -- df3 -6(X12) a = Ef3,  
ax:, ay:, az:, axl2 dxI2 

So here also 

E = El + E2 + E3 = -( K :  + K i  + K i ) .  

The situation is similar to the two-particle case and we have a solution of the form 

f 3  = [ a 3  exp( -iK3x3) + b, exp(-iK3x3)]{az exp[-iK2(xl + x2)] + b2 exp[iK2(xl + xdl)  

x ( ( I +  F ( K , ) )  ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~ l ~ ~ ~ ~ - ~ ~ ~ + ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~ l  
+ B ( K l )  exp[- iKl(x2-xl) l}~(xl  -x2)). (24) 

Case ( i i ) :  x2 it x l ,  x3 f xI . Here we define 

X13 = x3 - x2 y23 = x3+ x2 z 2 3  = XI. 

Here the reduced equation can be seen to be 

and the solution can be rewritten as in (24). 
Case (iii): x, # x1 ; x2 # x3. The useful coordinates are X 3 ,  = xi  - x3, Y3l= xI  + x3 

and Z3l= x,. Again the equation can be reduced to the form in (25) and solved explicitly. 
It is surprising that in case of DNLSE, a very simple pattern has emerged regarding 

the wavefunction structure of the Bethe states. From the well known rule of [3] one 
can perhaps conclude that the n-particle states will also be decomposable as in the 
case of two- and three-particle states. So even though, due to the non-canonical and 
non-ultralocal character, it was not possible to quantise this non-linear system via 
QISM, the Bethe states may yet be easily constructed and full information regarding 
the quantised non-linear system can be obtained from them. 
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